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Identification

The topic of this chapter corresponds to the second step of SEM: the evaluation 
of identification, or whether it is theoretically possible for the computer to derive a 
unique set of model parameter estimates. This chapter shows you how to evaluate the 
identification status of core types of structural equation models analyzed within single 
samples when means are not also estimated. A set of identification rules or heuristics 
is introduced. These rules describe sufficient requirements for identifying certain types 
of core structural equation models, and they are relatively straightforward to apply. 
There may be no heuristics for more complex models, but suggestions are offered 
about how to deal with the identification problem for such models. Some of the top-
ics discussed next require careful and patient study. However, many examples are 
offered, and exercises for this chapter give you additional opportunities for practice. 
A Chinese proverb states that learning is a treasure that will follow you everywhere. 
After mastering the concepts in this chapter, you will be better prepared to apply SEM 
in your own studies.

GENERAL REQUIREMENTS

There are two general requirements for identifying any structural equation model. 
Expressed more formally, these requirements are necessary but insufficient for identifi-
cation; they are:

1. The model degrees of freedom must be at least zero (dfM q 0).
2. Every latent variable (including the residual terms) must be assigned a scale 

(metric).
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Minimum Degrees of Freedom

Some authors describe the requirement for dfM q 0 as the counting rule (Kaplan, 2009). 
Models that violate the counting rule are not identified. Specifically, they are underi-
dentified or underdetermined. As an example of how a deficit of observations leads to 
nonidentification, consider the following equation:

 a + b = 6 (6.1)

Look at this expression as a model, the 6 as an observation, and a and b as parameters. 
Because Equation 6.1 has more parameters (2) than observations (1), it is impossible to 
find unique estimates for its parameters. In fact, there are an infinite number of solu-
tions, including (a = 4, b = 2), (a = 8, b = –2), and so on, all of which satisfy Equation 6.1. 
A similar thing happens when a computer tries to derive a unique set of estimates for 
the parameters of an underidentified structural equation model: it is impossible to do 
so, and the attempt fails.

This next example shows that having equal numbers of observations and param-
eters does not guarantee identification. Consider the following set of formulas:

 a + b = 6  (6.2) 
 3a + 3b = 18

Although this model has two observations (6, 18) and two parameters (a, b), it does not 
have a unique solution. Actually, an infinite number of solutions satisfy Equation 6.2, 
such as (a = 4, b = 2), (a = 8, b = –2), and so on. This happens due to an inherent char-
acteristic of the model: the second formula in Equation 6.2 (3a + 3b = 18) is not unique. 
Instead, it is simply three times the first formula (a + b = 6), which means that it cannot 
narrow the range of solutions that satisfy the first formula. These two formulas can also 
be described as linearly dependent.

Now consider the following set of formulas with two observations and two param-
eters where the second formula is not linearly dependent on the first:

 a + b = 6  (6.3) 
 2a + b = 10

This two-observation, two-parameter model has a unique solution (a = 4, b = 2); there-
fore, it is just-identified or just-determined. Note something else about Equation 6.3: 
given estimates of its parameters, it can perfectly reproduce the observations (6, 10). 
Recall that most structural equation models with zero degrees of freedom (dfM = 0) that 
are also identified can perfectly reproduce the data (sample covariances), but such mod-
els test no particular hypothesis.

A statistical model can also have fewer parameters than observations. Consider the 
following set of formulas with three observations and two parameters:
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 a + b = 6  (6.4) 
 2a + b = 10 
 3a + b = 12

Try as you might, you will be unable to find values of a and b that satisfy all three for-
mulas. For example, the solution (a = 4, b = 2) works only for the first two formulas in 
Equation 6.4, and the solution (a = 2, b = 6) works only for the last two formulas. At first, 
the absence of a solution seems paradoxical, but there is a way to solve this problem: 
Impose a statistical criterion that leads to unique estimates for an overidentified or 
overdetermined model with more observations than parameters. An example of such a 
criterion for Equation 6.4 is presented next:

Find values of a and b that are positive and yield total scores such that the
sum of the squared differences between the observations (6, 10, 12) 
and these totals is as small as possible.

Applying the criterion just stated to the estimation of a and b in Equation 6.4 yields a 
solution that not only gives the smallest squared difference (.67) but that is also unique. 
(Using only one decimal place, we obtain a = 3.0 and b = 3.3.) Note that this solution 
does not perfectly reproduce the observations (6, 10, 12) in Equation 6.4. Specifically, 
the three total scores obtained from Equation 6.4 given the solution (a = 3.0, b = 3.3) are 
(6.3, 9.3, 12.3). The fact that an overidentified model may not perfectly reproduce the 
data has an important role in model testing, one that is explored in later chapters.

Note that the terms just-identified and overidentified do not automatically apply to 
a structural equation model unless it meets both of the two necessary requirements 
for identification mentioned at the beginning of this section and additional, sufficient 
requirements for that particular type of model described later. That is:

1. A just-identified structural equation model is identified and has the same 
number of free parameters as observations (dfM = 0).

2. An overidentified structural equation model is identified and has fewer free 
parameters than observations (dfM > 0).

A structural equation model can be underidentified in two ways. The first case occurs 
when there are more free parameters than observations (dfM < 0). The second case hap-
pens when some model parameters are underidentified because there is not enough 
available information to estimate them but others are identified. In the second case, the 
whole model is considered nonidentified, even though its degrees of freedom could be 
greater than or equal to zero (dfM q 0). A general definition by Kenny (2004) that covers 
both cases just described is:

3. An underidentified structural equation model is one for which it is not pos-
sible to uniquely estimate all of its parameters.



   Identification 127

Scaling Latent Variables

Recall that error (residual) terms in SEM can be represented in model diagrams as latent 
variables. Accordingly, each error term requires a scale just as every substantive latent 
variable (i.e., factor) must be scaled, too. Options for scaling each type of variable are 
considered next.

Error Terms

Scales are usually assigned to disturbances (D) in structural models or measurement 
errors (E) in measurement models through a unit loading identification (ULI) con-
straint. This means that the path coefficient for the direct effect of a disturbance or 
measurement error—the unstandardized residual path coefficient—is fixed to equal the 
constant 1.0. In model diagrams, this specification is represented by the numeral 1 that 
appears next to the direct effect of a disturbance or a measurement error on the corre-
sponding endogenous variable. For example, the specification

 DY1
 l Y1 = 1.0

in the path analysis (PA) model of Figure 5.8(a) represents the assignment of a scale to 
the disturbance of endogenous variable Y1. This specification has the consequence of 
assigning to DY1

 a scale that is related to that of the unexplained variance of Y1. Like-
wise, the specification

 EX1
 l X1 = 1.0

in the CFA model of Figure 5.8(c) assigns to the error term EX1
 a scale related to variance 

in the indicator X1 that is unexplained by the factor this indicator is supposed to reflect 
(A). Once the scale of a disturbance or measurement error is set by imposing a ULI con-
straint, the computer needs only to estimate its variance. If residual terms are specified 
as correlated (e.g., Figure 5.3(b)), then the residual covariance can be estimated, too, 
assuming that the model with the correlated residuals is actually identified.

The specification of any positive scaling constant, such as 2.1 or 17.3, would identify 
the variance of a residual term, but it is much more common for this constant to equal 
1.0. A benefit of specifying that scaling constants are 1.0 is that for observed endogenous 
variables, the sum of the unstandardized residual variance and the explained variance 
will equal the unstandardized sample (total) variance of that endogenous variable. Also, 
most SEM computer programs make it easier to specify a ULI constraint for distur-
bances or measurement errors, or they do so by default.

Factors

Two traditional methods for scaling factors are described next. A more recent method by 
Little, Slegers, and Card (2006) is described later in this section. The first method is to 
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use the same method as for error terms, that is, by imposing ULI constraints. For a fac-
tor this means to fix the unstandardized coefficient (loading) for the direct effect on any 
one of its indicators to equal 1.0. Again, specification of any other positive scaling con-
stant would do, but 1.0 is the default in most SEM computer tools. In model diagrams, 
this specification is represented by the numeral 1 that appears next to the direct effect 
of a factor on one of its indicators. The indicator with the ULI constraint is known as 
the reference variable or marker variable. This specification assigns to a factor a scale 
related to that of the explained (common, shared) variance of the reference variable. For 
example, the specification

 A l X1 = 1.0

in the CFA model of Figure 6.1(a) makes X1 the reference variable and assigns a scale to 
factor A based on the common variance of X1. Assuming that scores on each multiple 
indicator of the same factor are equally reliable, the choice of which indicator is to be the 
reference variable is generally arbitrary. One reason is that the overall fit of the model to 
the data is usually unaffected by the selection of reference variables. Another is consis-
tent with the domain sampling model, wherein effect (reflective) indicators of the same 
factor are viewed as interchangeable (Chapter 5). However, if indicator scores are not 
equally reliable, then it makes sense to select the indicator with the most reliable scores 
as the reference variable. After all factors are scaled by imposing a ULI constraint on the 
loading of the reference variable for each factor, the computer must then only estimate 
factor variances and covariances.

The second basic option to scale a factor is to fix its variance to a constant. Speci-
fication of any positive constant would do, but it is much more common to impose a 
unit variance identification (UVI) constraint. This fixes the factor variance to 1.0 and 
also standardizes the factor. When a factor is scaled through a UVI constraint, all factor 
loadings are free parameters. A UVI constraint is represented in model diagrams in this 
book with the numeral 1 next to the symbol for the variance of an exogenous variable 
( ). For example, the variance of factor A is fixed to 1.0 in the CFA model of Figure 
6.1(b). This specification not only assigns a scale to A, but it also implies that the load-
ings of all three of its indicators can be freely estimated with sample data. With the 
factors standardized, the computer must then only estimate the factor correlation. Note 
that scaling factors either through ULI or UVI constraints reduces the total number of 
free parameters by one for each factor.

Both methods of scaling factors in CFA (i.e., impose ULI or UVI constraints) gener-
ally result in the same overall fit of the model, but not always. A special problem known 
as constraint interaction occurs when the choice between either method affects overall 
model fit. This phenomenon is described in Chapter 9, but most of the time constraint 
interaction is not a problem. The choice between these two methods, then, is usually 
based on the relative merits of analyzing factors in standardized versus unstandard-
ized form. When a CFA model is analyzed in a single sample, either method is probably 
acceptable. Fixing the variance of a factor to 1.0 to standardize it has the advantage of 
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simplicity. A shortcoming of this method, however, is that it is usually applicable only to 
exogenous factors. This is because although basically all SEM computer tools allow the 
imposition of constraints on any model parameter, the variances of endogenous variables 
are not considered model parameters. Only some programs, such as LISREL, SEPATH, 
and RAMONA, allow the predicted variances of endogenous factors to be constrained to 
1.0. This is not an issue for CFA models, wherein all factors are exogenous, but it can be 
for structural regression (SR) models, wherein some factors are endogenous.

There are times when standardizing factors is not appropriate. These include (1) 
the analysis of a structural equation model across independent samples that differ in 
their variabilities and (2) longitudinal measurement of variables that show increasing 
(or decreasing) variabilities over time. In both cases, important information may be lost 

FIGURE 6.1. Standard confirmatory factor analysis measurement models with unstandardized 
factors (a) and standardized factors (b).
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when factors are standardized. How to appropriately scale factors in a multiple-sample 
CFA analysis is considered in Chapter 9.

Exogenous factors in SR models can be scaled by imposing either a ULI constraint 
where the loading of one indicator per factor is fixed to 1.0 (the factor is unstandard-
ized) or a UVI constraint where the factor variance is fixed to 1.0 (the factor is standard-
ized). As mentioned, though, most SEM computer programs allow only the first method 
just mentioned for scaling endogenous factors. This implies that endogenous factors are 
unstandardized in most analyses. When an SR model is analyzed within a single sample, 
the choice between scaling an exogenous factor with either ULI or UVI constraints com-
bined with the use of ULI constraints only to scale endogenous factors usually makes 
no difference. An exception is when some factors have only two indicators and there is 
constraint interaction, which for SR models is considered in Chapter 10.

Little, Slegers, and Card (2006) describe a third method for scaling factors in models 
where (1) all indicators of each factor have the same scale (i.e., range of scores) and (2) 
most indicators are specified to measure (load on) a single factor. This method does not 
require the selection of a reference variable, such as when ULI constraints are imposed, 
nor does it standardize factors, such as when UVI constraints are imposed. Instead, 
this third method for scaling factors relies on the capability of modern SEM computer 
tools to impose constraints on a set of two or more model parameters, in this case the 
unstandardized factor loadings of all the indicators for the same factor. Specifically, 
the researcher scales factors in the Little–Sleger–Card (LSC) method by instructing the 
computer to constrain the average (mean) loading of a set of indicators on their common 
factor to equal 1.0 in the unstandardized solution. So scaled, the variance of the factor 
will be estimated as the average explained variance across all the indicators in their 
original metric, weighted by the degree to which each indicator contributes to factor 
measurement. Thus, factors are not standardized in this method, nor does the explained 
variance of any arbitrarily selected indicator (i.e., that of the reference variance when 
imposing a ULI constraint) determine factor variance. The LSC method results in the 
same overall fit of the entire model to the data as observed when imposing either ULI 
or UVI constraints to scale factors. Also, the LSC method is appropriate for the analysis 
of a model in a single group, across multiple groups, or across multiple occasions (i.e., 
repeated measures)—see Little, Slegers, and Card (2006) for more information.

UNIQUE ESTIMATES

This is the penultimate aspect of identification: It must be possible to express each and 
every model parameter as a unique function of elements of the population covariance 
matrix such that the statistical criterion to be minimized in the analysis is also satisfied. 
Because we typically estimate the population covariance matrix with the sample covari-
ance matrix, this facet of identification can be described by saying that there is a unique 
set of parameter estimates, given the data and the statistical criterion to be minimized.

Determining whether the parameters can be expressed as unique functions of the 
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sample data is not an empirical question. Instead, it is a mathematical or theoretical 
question that can be evaluated by resolving equations that represent the parameters in 
terms of symbols that correspond to elements of the sample covariance matrix. This 
exercise takes the form of a formal mathematical proof, so no actual numerical values are 
needed for elements of the sample covariance matrix, just symbolic representations of 
them. This means that model identification can—and should—be evaluated before the data 
are collected. You may have seen formal mathematical proofs for ordinary least squares 
(OLS) estimation in multiple regression (MR). These proofs involve showing that stan-
dard formulas for regression coefficients and intercepts (e.g., Equations 2.5, 2.7, 2.8) are, 
in fact, those that satisfy the least squares criterion. A typical proof involves working 
with second derivatives for the function to be minimized. Dunn (2005) describes a less 
conventional proof for OLS estimation based on the Cauchy–Schwartz inequality, which 
is related to the triangle inequality in geometry as well as to limits on the bounds of cor-
relation and covariance statistics in positive-definite data matrices (Chapter 3).

The derivation of a formal proof for a simple regression analysis would be a fairly 
daunting task for those without a strong mathematics background, and models ana-
lyzed in SEM are often more complicated than simple regression models. Also, the 
default estimation method in SEM, maximum likelihood (ML), is more complex than 
OLS estimation, which implies that the statistical criterion minimized in ML estima-
tion is more complicated, too. Unfortunately, SEM computer tools are of little help in 
determining whether or not a particular structural equation model is identified. Some 
of these programs perform rudimentary checks for identification, such as applying the 
counting rule, but these checks generally concern necessary conditions, not sufficient 
ones.

It may surprise you to learn that SEM computer tools are rather helpless in this 
regard, but there is a simple explanation: Computers are very good at numerical process-
ing. However, it is harder to get them to process symbols, and it is symbolic processing 
that is needed for determining whether a particular model is identified. Computer lan-
guages for symbolic processing, such as LISP (list processing), form the basis of some 
applications of computers in the areas of artificial intelligence and expert systems. But 
contemporary SEM computer tools lack any real capability for symbolic processing of 
the kind needed to prove model identification for a wide range of models.

Fortunately, one does not need to be a mathematician in order to deal with the iden-
tification problem in SEM. This is because a series of less formal rules, or identification 
heuristics, can be applied by ordinary mortals (the rest of us) to determine whether 
certain types of models are identified. These heuristics cover many, but not all, kinds of 
core structural equation models considered in this part of the book. They are described 
next for PA models, CFA models, and fully latent SR models. This discussion assumes 
that the two necessary requirements for identification (dfM q 0; latent variables scaled) 
are satisfied. Recall that CFA models assume reflective measurement where indicators 
are specified as caused by the factors (Chapter 5). Formative measurement models in 
which underlying observed or latent composites are specified as caused by their indica-
tors have special identification requirements that are considered in Chapter 10.
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RULE FOR RECURSIVE STRUCTURAL MODELS

Because of their particular characteristics, recursive path models are always identified 
(e.g., Bollen, 1989, pp. 95–98). This property is even more general: Recursive structural 
models are identified, whether the structural model consists of observed variables only 
(path models) or factors only (the structural part of a fully latent SR model). Note that 
whether the measurement component of an SR model with a recursive structural model 
is also identified is a separate question, one that is dealt with later in this chapter. The 
facts just reviewed underlie the following sufficient condition for identification:

Recursive structural models are identified.  (Rule 6.1)

RULES FOR NONRECURSIVE STRUCTURAL MODELS

The material covered in this section is more difficult, and so readers interested in recur-
sive structural models only can skip it (i.e., go the section on CFA). However, you can 
specify and test an even wider range of hypotheses about direct and indirect effects (e.g., 

It is frustrating that computers are of little help in dealing with identification in SEM, but you can 
apply heuristics to verify the identification status of many types of models. Copyright 2004 by 
Betsy Streeter. Reprinted with permission from CartoonStock Ltd. (www.cartoonstock.com).
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feedback loops) if you know something about nonrecursive structural models, so the 
effort is worthwhile.

The case concerning identification for nonrecursive structural models—whether 
among observed variables (path models) or factors (SR models)—is more complicated. 
This is because, unlike recursive models, nonrecursive models are not always identified. 
Although algebraic means can be used to determine whether the parameters of a nonre-
cursive model can be expressed as unique functions of its observations (e.g., Berry, 1984, 
pp. 27–35), these techniques are practical only for very simple models. Fortunately, there 
are alternatives that involve determining whether a nonrecursive model meets certain 
requirements for identification that can be checked by hand (i.e., heuristics). Some of 
these requirements are only necessary for identification, which means that satisfying 
them does not guarantee identification. If a nonrecursive model satisfies a sufficient 
condition, however, then it is identified. These requirements are described next for non-
recursive path models, but the same principles apply to SR models with nonrecursive 
structural components.

The nature and number of conditions for identification that a nonrecursive model 
must satisfy depend on its pattern of disturbance correlations. Specifically, the neces-
sary order condition and the sufficient rank condition apply to models with unana-
lyzed associations between all pairs of disturbances either for the whole model or within 
blocks of endogenous variables that are recursively related to each other. Consider the 
two nonrecursive path models in Figure 6.2. For both models, dfM q 0 and all latent 
variables are scaled, but these facts are not sufficient to identify either model. The model 
of Figure 6.2(a) has an indirect feedback loop that involves Y1–Y3 and all possible dis-
turbance correlations (3). The model of Figure 6.2(b) has two direct feedback loops and 
a pattern of disturbance correlations described by some authors as block recursive. One 
can partition the endogenous variables of this model into two blocks, one with Y1 and 
Y2 and the other made up of Y3 and Y4. Each block contains all possible disturbance cor-
relations ( D1  D2 for the first block, D3  D4 for the second), but the disturbances 
across the blocks are independent (e.g., D1 is uncorrelated with D3). Also, the pattern of 
direct effects within each block is nonrecursive (e.g., Y1  Y2), but effects between the 
blocks are unidirectional (recursive). Thus, the two blocks of endogenous variables in 
the model of Figure 6.2(b) are recursively related to each other even though the whole 
model is nonrecursive.

Order Condition

The order condition is a counting rule applied to each endogenous variable in a non-
recursive model that either has all possible disturbance correlations or that is block 
recursive. If the order condition is not satisfied, the equation for that endogenous vari-
able is underidentified. One evaluates the order condition by tallying the number of 
variables in the structural model (except disturbances) that have direct effects on each 
endogenous variable versus the number that do not; let’s call the latter excluded vari-
ables. The order condition can be stated as follows:
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The order condition requires that the number of excluded variables for (Rule 6.2)
each endogenous variable equals or exceeds the total number of 
endogenous variables minus 1.

For nonrecursive models with correlations between all pairs of disturbances, the total 
number of endogenous variables equals that for the whole model. For example, the 
model of Figure 6.2(a) has all possible disturbance correlations, so the total number of 
endogenous variables equals 3. This means that a minimum of 3 – 1 = 2 variables must 
be excluded from the equation of each endogenous variable, which is true here: There 
are three variables excluded from the equation of every endogenous variable (e.g., X2, 
X3, and Y2 for Y1), which exceeds the minimum number (2). Thus, the model of Figure 
6.2(a) meets the order condition.

For nonrecursive models that are block recursive, however, the total number of 

FIGURE 6.2.  Two examples of nonrecursive path models with feedback loops.
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endogenous variables is counted separately for each block when the order condition is 
evaluated. For example, there are two recursively related blocks of endogenous vari-
ables in the model of Figure 6.2(b). Each block has two variables, so the total number 
of endogenous variables for each block is 2. To satisfy the order condition, at least 2 – 1 
= 1 variables must be excluded from the equation of each endogenous variable in both 
blocks, which is true here. Specifically, one variable is excluded from each equation 
for Y1 and Y2 in the first block (e.g., X2 for Y1), and three variables are excluded from 
each equation for Y3 and Y4 in the second block (e.g., X1, X2, and Y2 for Y3). Because the 
number of excluded variables for each endogenous variable in every block exceeds the 
minimum number, the order condition is satisfied for this model.

Rank Condition

Because the order condition is only necessary, we still do not know whether the nonre-
cursive models in Figure 6.2 are identified. Evaluation of the sufficient rank condition, 
however, will provide the answer. The rank condition is usually described in the SEM 
literature in matrix terms (e.g., Bollen, 1989, pp. 98–103), which is fine for those familiar 
with linear algebra but otherwise not. Berry (1984) devised an algorithm for checking 
the rank condition that does not require extensive knowledge of matrix operations, a 
simpler version of which is described in Appendix 6.A. A nontechnical description of 
the rank condition is given next.

For nonrecursive models with all possible disturbance correlations, the rank condi-
tion can be viewed as a requirement that each variable in a feedback loop has a unique 
pattern of direct effects on it from variables outside the loop. Such a pattern of direct 
effects provides a “statistical anchor” so that the parameters of variables involved in 
feedback loops can be estimated distinctly from one another. Look again at Figure 6.2(a). 
Each of the three endogenous variables of this model has a unique pattern of direct 
effects on it from variables external to their indirect feedback loop; that is:

 X1 l Y1, X2 l Y2, and X3 l Y3

This analogy does not hold for those models considered in this book to be nonrecur-
sive that do not have feedback loops, such as partially recursive models with correlated 
disturbances in a bow pattern (e.g., Figure 5.3(d)). Therefore, a more formal means of 
evaluating the rank condition is needed; see Appendix 6.A. The identification rule for 
the rank condition for nonrecursive models that either have all possible disturbance cor-
relations or that are block recursive is stated next:

Nonrecursive models that satisfy the rank condition are identified. (Rule 6.3)

Rigdon (1995) describes a graphical technique for evaluating identification status 
that breaks the model down into a series of two-equation nonrecursive blocks, such 
as for a direct feedback loop. This graphical technique could complement or in some 
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cases replace evaluation of the order condition and the rank condition using the meth-
ods described here. Eusebi (2008) describes a graphical counterpart of the rank condi-
tion, but it requires knowledge of undirected, directed, and directed acyclic graphs from 
graphical models theory.

Respecification of Nonidentified Nonrecursive Models

Now let’s consider a nonrecursive model that is not identified and some options for its 
respecification. Presented in Figure 6.3 is a nonrecursive path model with all possible 
disturbance correlations based on an example by Berry (1984). In this model, let Y1 and 
Y2 represent, respectively, violence on the part of protesters and police. The direct feed-
back loop in this model reflects the hypothesis that as protesters become more violent, 
so do the police, and vice versa. The two measured exogenous variables, X1 and X2, 
represent, respectively, the seriousness of the civil disobedience committed by the pro-
testers and the availability of police riot gear (clubs, tear gas, etc.). Immediately after its 
specification but before the data are collected, the researcher evaluates its identification 
status. Two problems are discovered: the model has more parameters (11) than observa-
tions (10), and the order condition is violated because there are no excluded variables 
for Y2. Because this model fails the order condition, it will also fail the rank condition. 
An exercise will ask you to verify that dfM = –1 for the model of Figure 6.3 and also that 
it fails both the order condition and the rank condition.

What can be done about this identification problem? Because the data are not yet 
collected, one possibility is to add exogenous variables to the model such that (1) the 
number of additional observations afforded by adding variables is greater than the num-
ber of free parameters they bring to the model; (2) the number of excluded variables for 
Y1 and Y2 are each at least 1; and (3) the respecified model also meets the rank condition. 
Suppose that it is decided that a new exogenous variable, X3, would be protesters’ level of 

FIGURE 6.3. A nonrecursive model that is not identified.
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commitment to nonviolence. The addition of the path X3 l Y1 (Y1 is protester violence) 
and unanalyzed associations between X3 and the other two exogenous variables would 
accomplish the goals just listed. Thus, the model respecified in this way is identified. An 
exercise will ask you to verify this fact.

Equality and Proportionality Constraints

The imposition of an equality or a proportionality constraint on the direct effects of a 
feedback loop is one way to reduce the number of free parameters without dropping 
paths. For example, the specification that both direct effects of the reciprocal relation 
Y1  Y2 are equal means that only one path coefficient is needed rather than two. 
A possible drawback of imposing equality constraints on feedback loops is that they 
preclude the detection of unequal mutual influence. For example, Wagner, Torgeson, 
and Rashotte (1994) found in longitudinal studies that the effect of children’s phono-
logical processing abilities on their reading skills is about three times the magnitude of 
the effect in the opposite direction. If equality constraints were blindly imposed when 
bidirectional effects differ in magnitude, then not only may the model poorly fit the 
data but the researcher may miss an important finding. In contrast, a proportionality 
constraint allows for unequal mutual influence but on an a priori basis. For instance, 
it may be specified that the path Y1 l Y2 must be three times the value of that for the 
path Y2 l Y1. Like equality constraints, proportionality constraints reduce the number 
of free parameters, one for each pair of direct effects. However, the imposition of propor-
tionality constraints generally requires knowledge about relative effect magnitudes.

“None-of-the-Above” Nonrecursive Models

If a nonrecursive structural model has either no disturbance correlations or less than all 
possible disturbance correlations such that the model is not block recursive, the order 
and rank conditions are generally too conservative. That is, such “none-of-the-above” 
nonrecursive models that fail either condition may nevertheless be identified. Unfor-
tunately, there may be no sufficient condition that can be readily evaluated by hand to 
determine whether a none-of-the-above nonrecursive model is actually identified. Thus, 
the identification status of such models may be ambiguous. How to deal with structural 
equation models where identification status is unknown is discussed later.

RULES FOR STANDARD CFA MODELS

Meeting both necessary requirements also does not guarantee that a CFA measurement 
model is identified. For standard CFA models that specify unidimensional measure-
ment—every indicator loads on just one factor and there are no measurement error 
correlations—there are some straightforward rules that concern minimum numbers of 
indicators per factor. They are summarized next:
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If a standard CFA model with a single factor has at least three (Rule 6.4)
indicators, the model is identified.

If a standard CFA model with q 2 factors has q 2 indicators per (Rule 6.5)
factor, the model is identified.

That’s it. The first heuristic just listed for single-factor models is known as the three-
indicator rule, and the second heuristic for models with multiple constructs is the two-
indicator rule. Recall that CFA models (and SR models, too) with factors that have only 
two indicators are more prone to problems in the analysis. It is better to have at least 
three to four indicators per factor to prevent such problems, but two indicators per factor 
is the minimum for identification.

Let’s apply the requirements just discussed to the standard CFA models presented 
in Figure 6.4. The model of Figure 6.4(a) has a single factor with two indicators. This 
model is underidentified: With two observed variables, there are three observations but 
four parameters, including three variances of exogenous variables (of factor A and two 
measurement errors, E1 and E2) and one factor loading (of X2; the other is fixed to 1.0 to 
scale A), so dfM = –1 for the model in Figure 6.4(a). The imposition of a constraint, such 
as one of equality, or

 A l X1 = A l X2 = 1.0

may make this model estimable because dfM would be zero in the respecified one- factor, 
two-indicator model. For such models Kenny (1979) noted that if the correlation between 
the two indicators is negative, then the just-identified model that results by imposing 
an equality constraint on the factor loadings does not exactly reproduce the correlation. 
This is an example of a just-identified structural equation model that does not perfectly 
fit the data.

Because the single-factor model in Figure 6.4(b) has three indicators, it is identified. 
Specifically, it is just-identified: There are 3(4)/2 = 6 observations available to estimate 
the six-model parameters, including four variances (of factor A and three measurement 
errors) and two factor loadings (dfM = 0). Note that a standard, one-factor CFA model 
must have at least four indicators in order to be overidentified. Because each of the two 
factors in the model of Figure 6.4(c) has two indicators, it is identified. Specifically, it is 
overidentified and dfM = 1.

RULES FOR NONSTANDARD CFA MODELS

There is a different—and more complicated—set of rules for nonstandard CFA models 
that specify multidimensional measurement where some indicators load on more than 
a single factor or some error terms covary. Readers interested in standard CFA models 
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only can skip this section (i.e., go to the section on SR models), but standard CFA models 
have more restrictive assumptions compared with nonstandard CFA models. Again, the 
reward of greater flexibility in hypothesis testing requires even more careful study, but 
you can do it.

O’Brien (1994) describes a set of rules for nonstandard measurement models where 
every indicator loads on a single factor but some measurement error correlations are 
freely estimated. These rules are applied “backwards” starting from patterns of inde-
pendent (uncorrelated) pairs of error terms to prove the identification of factor loadings, 
then of error variances, next of factor correlations in multiple-factor models, and finally 
of measurement error correlations. The O’Brien rules work well for relatively simple 

FIGURE 6.4. Identification status of three standard confirmatory factor analysis models.
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measurement models, but they can be awkward to apply to more complex models. A dif-
ferent set of identification rules by Kenny, Kashy, and Bolger (1998) that may be easier 
to apply is listed in Table 6.1 as Rule 6.6. This rule spells out requirements that must be 
satisfied by each factor (Rule 6.6a), pair of factors (Rule 6.6b), and indicator (Rule 6.6c) 
in order to identify measurement models with error correlations.

Rule 6.6a in Table 6.1 is a requirement for a minimum number of indicators per 
factor, either two or three depending on the pattern of error correlations or constraints 
imposed on factor loadings. Rule 6.6b refers to the specification that for every pair of 
factors, there must be at least two indicators, one from each factor, whose error terms 
are not correlated. Rule 6.6c concerns the requirement for every indicator that there is at 
least one other indicator in the model with which it does not share an error correlation. 
Rule 6.6 in Table 6.1 assumes that all factor covariances are free parameters and that 
there are multiple indicators of every factor. Kenny et al. (1998) describe additional rules 
not considered here for exceptions to these assumptions.

Kenny et al. (1998) also describe identification rules for indicators in nonstandard 
measurement models that load on q 2 factors. Let’s refer to such indicators as complex 
indicators. The first requirement is listed in the top part of Table 6.2 as Rule 6.7, and 
it concerns sufficient requirements for identification of the multiple-factor loadings of 
a complex indicator. Basically, this rule requires that each factor on which a complex 
indicator loads has a sufficient number of indicators (i.e., each factor meets Rule 6.6a 
in Table 6.1). Rule 6.7 also requires that each one of every pair of such factors has an 
indicator that does not share an error correlation with a corresponding indicator of the 
other factor (see Table 6.2). If a complex indicator shares error correlations with other 
indicators, then the additional requirement listed as Rule 6.8 in Table 6.2 must also be 

TABLE 6.1. Identification Rule 6.6 for Nonstandard Confirmatory Factor Analysis 
Models with Measurement Errors

For a nonstandard CFA model with measurement error correlations to be 
identified, all three of the conditions listed next must hold:

(Rule 6.6)

For each factor, at least one of the following must hold: (Rule 6.6a)
1. There are at least three indicators whose errors are uncorrelated with  
   each other.
2. There are at least two indicators whose errors are uncorrelated and 
   either

a. the errors of both indicators are not correlated with the error term 
  of a third indicator for a different factor, or
b. an equality constraint is imposed on the loadings of the two 
  indicators.

For every pair of factors, there are at least two indicators, one from each 
factor, whose error terms are uncorrelated.

(Rule 6.6b)

For every indicator, there is at least one other indicator (not necessarily of 
the same factor) with which its error term is not correlated.

(Rule 6.6c)

Note. These requirements are described as Conditions B–D in Kenny, Kashy, and Bolger (1998, pp. 253–254).
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satisfied, too. This rule requires that for each factor on which a complex indicator loads, 
there is at least one other indicator with a single loading that does not share an error cor-
relation with the complex indicator. The requirements of Rules 6.6 and 6.7 are typically 
addressed by specifying that some indicators load on just a single factor.

Let’s apply the identification heuristics just discussed to the nonstandard CFA mod-
els presented in Figure 6.5. To save space, I use a compact notation in the figure where 
latent constructs are denoted by circles, indicators by Xs, and error terms by Es. How-
ever, do not forget the variance parameter associated with each exogenous variable in 
Figure 6.5 that is normally represented by the  symbol in model diagrams elsewhere 
in this book. The single-factor, four-indicator model in Figure 6.5(a) has two error cor-
relations, or

 EX2
  EX4

 and EX3
  EX4

This model is just-identified because it has no degrees of freedom (dfM = 0), its factor (A) 
has at least three indicators (X1–X3) whose error terms are uncorrelated (Rule 6.6a), and 
all other requirements of Rule 6.6 (Table 6.1) are met. The single-factor, four-indicator 
model in Figure 6.5(b) also has two error correlations (i.e., dfM = 0) but in a different 
pattern, or

 EX1
  EX2

 and EX3
  EX4

TABLE 6.2. Identification Rule 6.7 for Multiple Loadings of Complex Indicators 
in Nonstandard Confirmatory Factor Analysis Models and Rule 6.8 for Error 
Correlations of Complex Indicators

Factor loadings

For every complex indicator in a nonstandard CFA model: (Rule 6.7)
In order for the multiple factor loadings to be identified, both of the 
following must hold:

1. Each factor on which the complex indicator loads must satisfy  
  Rule 6.6a for a minimum number of indicators.
2. Every pair of those factors must satisfy Rule 6.6b that each factor 
  has an indicator that does not have an error correlation with a 
  corresponding indicator on the other factor of that pair.

Error correlations
In order for error correlations that involve complex indicators to be 
identified, both of the following must hold:

(Rule 6.8)

1. Rule 6.7 is satisfied.
2. For each factor on which a complex indicator loads, there must be 
  at least one indicator with a single loading that does not have an 
  error correlation with the complex indicator.

Note. These requirements are described as Condition E in Kenny, Kashy, and Bolger (1998, p. 254).
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FIGURE 6.5. Identification status of nonstandard confirmatory factor analysis models.
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Although this model has at least two indicators whose error terms are independent, such 
as X2 and X3, it nevertheless fails Rule 6.6a because there is no indicator of a different 
factor with which X2 and X3 do not share an error correlation. Therefore, the model in 
Figure 6.5(b) is not identified. However, this model would be identified if an equality 
constraint were imposed on the factor loadings of X2 and X3. That is, the specification 
that

 A l X2 = A l X3

would be sufficient to identify the model in Figure 6.5(b) because then Rule 6.6 would 
be met.

The two-factor, four-indicator model of Figure 6.5(c) with a single error correla-
tion (EX2

  EX4
) is just-identified because dfM = 0 and all three requirements for Rule 

6.6 are satisfied (Table 6.1). However, the two-factor, four-indicator model in Figure 
6.5(d) with a different error correlation (EX3

  EX4
) is not identified because it vio-

lates Rule 6.6a. Specifically, factor B in this model does not have two indicators whose 
error terms are independent. In general, it is easier to uniquely estimate cross-factor 
error correlations (e.g., Figure 6.5(c)) than within-factor error correlations (e.g., Figure 
6.5(d)) when there are only two indicators per factor without imposing additional con-
straints. The three-factor, two-indicator model in Figure 6.5(e) with two cross-factor 
error correlations, or

 EX1
  EX3

 and EX2
  EX4

is overidentified because the degrees of freedom are positive (dfM = 4) and Rule 6.6 
is satisfied. This model also demonstrates that adding indicators—along with a third 
factor—allows the estimation of additional error correlations compared with the two-
factor model in Figure 6.5(c). The model in Figure 6.5(f) has a complex indicator that 
loads on two factors, or

 A l X3 and B l X3

Because this model meets the requirements of Rule 6.7 and has positive degrees of free-
dom (dfM = 3), it is overidentified. An exercise will ask you to add error correlations to 
this model with a complex indicator and then evaluate Rule 6.8 in order to determine 
whether the respecified models is identified.

The specification of either correlated measurement errors or of some indicators 
loading on multiple factors may not cause identification problems. The presence of both 
in the same model, though, can complicate matters. For example, it can be difficult 
to correctly apply the O’Brien rules or Kenny–Kashy–Bolger rules to complex models, 
especially models where some factors have at least five indicators. Because these require-
ments are sufficient, a complex nonstandard CFA model that is really identified could 
nevertheless fail some of these rules. Fortunately, most CFA models described in the 
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literature do not have complex indicators, so only Rule 6.6 for error correlations in mea-
surement models is applied most often in practice.

RULES FOR SR MODELS

This section deals with fully latent SR models in which each variable in the structural 
model (except disturbances) is a factor measured by multiple indicators. The identifica-
tion status of partially latent SR models where at least one construct in the structural 
model is measured by a single indicator is considered in Chapter 10. If one understands 
something about the identification of structural models and measurement models, there 
is relatively little new to learn about SR models. This is because the evaluation of whether 
an SR model is identified is conducted separately for each part of the model, measure-
ment and structural. Indeed, a theme of this evaluation is that a valid (i.e., identified) 
measurement model is needed before it makes sense to evaluate the structural part of 
an SR model.

As with CFA models, meeting the two necessary requirements does not guarantee 
the identification of an SR model. Additional requirements reflect the view that the anal-
ysis of an SR model is essentially a path analysis conducted with estimated variances 
and covariances among the factors. Thus, it must be possible for the computer to derive 
unique estimates of the factor variances and covariances before specific direct effects 
among them can be estimated. In order for the structural portion of an SR model to be 
identified then, its measurement portion must be identified. Bollen (1989) describes this 
requirement as the two-step rule, and the steps to evaluate it are outlined next:

In order for an SR model to be identified, both of the following must (Rule 6.9) 
hold:

1. The measurement part of the model respecified as a CFA model  
is identified (evaluate the measurement model against Rules  
6.4–6.8).

2. The structural part of the model is identified (evaluate the structural 
   model against Rules 6.1–6.3).

The two-step rule is a sufficient condition: SR models that satisfy both parts of this rule 
are identified. Evaluation of the two-step rule is demonstrated next for the fully latent SR 
model presented in Figure 6.6(a). This model meets the necessary requirements because 
every latent variable is scaled and there are more observations than free parameters. 
Specifically, with six observed variables, there are 6(7)/2 = 21 observations available to 
estimate this model’s 14 parameters, including nine variances of exogenous variables 
(of six measurement errors, one exogenous factor A, and two disturbances), three factor 
loadings, and two direct effects between factors (dfM = 7). However, we still do not know 
whether the model of Figure 6.6(a) is identified. To find out, we can apply the two-step 
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rule. The respecification of this SR model as a CFA measurement model is presented in 
Figure 6.6(b). Because this standard three-factor CFA model has at least two indicators 
per factor, it is identified (Rule 6.5). The first part of the two-step rule is satisfied. The 
structural part of the SR model is presented in Figure 6.6(c). Because the structural 
model is recursive, it too is identified (Rule 6.1). Because the original SR model in Figure 

FIGURE 6.6. Evaluation of the two-step rule for identification for a fully latent structural 
regression (SR) model.
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6.6(a) meets both parts of the sufficient two-step rule (Rule 6.9), it is identified, specifi-
cally, overidentified.

It is not always possible to determine the identification status of every fully latent 
SR model using the two-step identification heuristic. For example, suppose that the 
structural portion of an SR model is nonrecursive such that it does not have all possible 
disturbance correlations, nor is it block recursive. In this case, the rank condition (Rule 
6.3) is not a sufficient condition for identifying the structural model. Therefore, the 
nonrecursive structural model is “none-of-the-above” concerning identification. Con-
sequently, evaluation of the two-step rule cannot clearly establish whether the original 
SR model is identified. The same thing can happen when the measurement model of an 
SR model has both error correlations and complex indicators: If either the measurement 
or structural portions of an SR model is “none-of-the-above” such that its identification 
status cannot be clearly established, the two-step rule may be too strict. That is, an SR 
model of ambiguous identification status may fail the two-step rule but still be identi-
fied. Fortunately, many SR models described in the literature have standard measure-
ment models and recursive structural models. In this case, identification status is clear: 
such SR models are identified.

A HEALTHY PERSPECTIVE ON IDENTIFICATION

Respecification of a structural equation model so that it is identified can at first seem like 
a shell game: Add this path, drop another, switch an error correlation and—voilà!—the 
model is identified or—curses!—it is not. Although one obviously needs an identified 
model, it is crucial to modify models in a judicious manner. That is, any change to 
the original specification of a model for the sake of identification should be guided by 
your hypotheses and theory, not by empirical ones. For example, one cannot estimate a 
model, find that a path coefficient is close to zero, and then eliminate the path in order 
to identify a model (Kenny et al., 1998). Don’t lose sight of the ideas that motivated the 
analysis in the first place through haphazard specification.

EMPIRICAL UNDERIDENTIFICATION

Although it is theoretically possible (that word again) for the computer to derive a set of 
unique estimates for the parameters of identified models, their analysis can still be foiled 
by other types of problems. Data-related problems are one such difficulty. For example, 
extreme collinearity can result in what Kenny (1979) referred to as empirical underi-
dentification. For example, if two observed variables are very highly correlated (e.g., rXY 
= .90), then, practically speaking, they are the same variable. This reduces the effective 
number of observations below the value of v (v + 1)/2 (i.e., Rule 5.2). An effective reduc-
tion in the number of observations can also shrink the effective value of dfM, perhaps to 
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less than zero. The good news about this kind of empirical underidentification is that it 
can be detected through careful data screening.

Other types of empirical underidentification can be more difficult to detect, such 
as when estimates of certain key paths in a nonrecursive structural model equal a very 
small or a very high value. Suppose that the coefficient for the path X2 l Y2 in the non-
recursive model of Figure 6.2(b) is about zero. The virtual absence of this path alters 
the system matrix for the first block of endogenous variables such that the rank of the 
equation for Y1 for the model in Figure 6.2(b) without the path X2 l Y2 is zero, which 
violates the rank condition. You will be asked in an exercise to demonstrate this fact for 
Figure 6.2(b). Empirical underidentification can affect CFA and SR models, too. Suppose 
that the estimated factor loading for the path A l X2 in the single-factor, three-indicator 
model of Figure 6.4(b) is close to zero. Practically speaking, this model would resemble 
the one in Figure 6.4(a) in that factor A has only two indicators, which is too few for a 
single-factor model. A few additional examples are considered next.

The two-factor model of Figure 6.4(c) may be empirically underidentified if the esti-
mate of the covariance (or correlation) between factors A and B is close to zero. The vir-
tual elimination of the path A  B from this model transforms it into two single-factor, 
two-indicator models, each of which is underidentified. Measurement models where all 
indicators load on two factors, such as the classic model for a multitrait-multimethod 
(MTMM) analysis where each indicator loads on both a trait factor and a method fac-
tor (Chapter 9), are especially susceptible to empirical underidentification (Kenny et 
al., 1998). The identification status of different types of CFA models for MTMM data is 
considered in Chapter 9. The measurement model in Figure 6.5(f) where indicator X3 
loads on both factors may be empirically underidentified if the absolute estimate of the 
factor correlation is close to 1.0. Specifically, this extreme collinearity, but now between 
factors instead of observed variables, can complicate the estimation of X3’s factor load-
ings. Other possible causes of empirical underidentification include (1) violation of the 
assumptions of normality or linearity when using normal theory methods (e.g., default 
ML estimation) and (2) specification errors (Rindskopf, 1984).

MANAGING IDENTIFICATION PROBLEMS

The best advice for avoiding identification problems was given earlier but is worth repeat-
ing: Evaluate whether your model is identified right after it is specified but before the 
data are collected. That is, prevention is better than cure. If you know that your model 
is in fact identified yet the analysis fails, the source of the problem may be empirical 
underidentification or a mistake in computer syntax. If a program error message indi-
cates a failure of iterative estimation, another possible diagnosis is poor start values, or 
initial estimates of model parameters. How to specify better start values is discussed in 
Chapter 7 for structural models and Chapter 9 for measurement models.

Perhaps the most challenging problem occurs when analyzing a complex model 
for which no clear identification heuristic exists. This means that whether the model 
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is actually identified is unknown. If the analysis fails in this case, it may be unclear 
whether the model is at fault (it is not really identified), the data are to blame (e.g., 
empirical underidentification), or you made a mistake (syntax error or bad start values). 
Ruling out a mistake does not resolve the basic ambiguity about identification. Here are 
some tips on how to cope:

1. A necessary but insufficient condition for the identification of a structural equa-
tion model is that an SEM computer can generate a converged solution with no evidence 
of technical problems such as Heywood cases, or illogical estimates (described in the 
next chapter). This empirical check can be applied to the actual data. Instead, you can use 
an SEM computer program as a diagnostic tool with made-up data that are anticipated to 
approximate actual values. This suggestion assumes that the data are not yet collected, 
which is when the identification question should be addressed. Care must be taken not 
to generate hypothetical correlations or covariances that are out of bounds (but you can 
check whether the matrix is positive definite; Chapter 3) or that may result in empirical 
underidentification. If you are unsure about a particular made-up data matrix, then oth-
ers with somewhat different but still plausible values can be constructed. The model is 
then analyzed with the hypothetical data. If a computer program is unable to generate 
a proper solution, the model may not be identified. Otherwise, it may be identified, but 
this is not guaranteed. The solution should be subjected to other empirical checks for 
identification described in Chapter 9, but these checks concern only necessary require-
ments for identification.

2. A common beginner’s mistake in SEM is to specify a complex model of ambigu-
ous identification status and then attempt to analyze it. If the analysis fails (likely), it is 
not clear what caused the problem. Start instead with a simpler model that is a subset of 
the whole model and is also one for which the application of heuristics can prove iden-
tification. If the analysis fails, the problem is not identification. Otherwise, add param-
eters to the simpler model one at a time. If the analysis fails after adding a particular 
effect, try a different order. If these analyses also fail at the same point, then adding the 
corresponding parameter may cause underidentification. If no combination of adding 
effects to a basic identified model gets you to the target model, then think about how 
to respecify the original model in order to identify it and yet still respect your hypoth-
eses.

SUMMARY

It is easy to determine whether recursive path models, standard confirmatory factor 
analysis models, and structural regression models with recursive structural models 
and standard measurement models are identified. About all that is needed is to check 
whether the model degrees of freedom are at least zero, every latent variable has a scale, 
and every factor has at least two indicators. However, the identification status of nonre-
cursive structural models or nonstandard measurement models is not always so clear. If 
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a nonrecursive model does not have all possible disturbance correlations or is not block 
recursive, there may be no easily applied identification heuristic. There are heuristics 
for measurement models with either correlated errors or indicators that load on multiple 
factors, but these rules may not work for more complicated models with both features 
just mentioned. It is best to avoid analyzing a complex model of ambiguous identifica-
tion status as your initial model. Instead, first analyze simpler models that you know are 
identified before adding free parameters. A later chapter (11) deals with identification 
when means are analyzed in SEM. The next chapter concerns the estimation step.
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EXERCISES

 1. Write more specific versions of Rule 5.1 about model parameters for path mod-
els, CFA models, and SR models when means are not analyzed.

 2. Explain why this statement is generally untrue: The specification B l X3 = 1.0 
in Figure 6.4(c) assigns to factor B the same scale as that of indicator X3.

 3. Show that the factor models in Figures 6.1(a) and 6.1(b) have the same degrees 
of freedom.

 4. Show for the nonrecursive path model in Figure 6.3 that dfM = –1 and also that 
this model fails both the order condition and the rank condition.

 5. Show that the nonrecursive model in Figure 6.3 is identified when the path 
X3 l Y1 is included in the model.

 6. Variable X3 of Figure 6.5(f) is a complex indicator with loadings on two factors. 
If the error correlation EX3

  EX5
 is added to this model, would the result-
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ing respecified model be identified? If yes, determine whether additional error 
correlations involving X3 could be added to the respecified model (i.e., the one 
with EX3

  EX5
).

 7. Suppose that the estimate of the path X2 l Y2 in the block recursive path 
model of Figure 6.2(b) is close to zero. Show that the virtual absence of this 
path may result in empirical underidentification of the equation for at least one 
endogenous variable.

 8. Consider the SR model in Figure 6.6(a). If the error correlations DB  DC, 
EX1

  EY1
, and EX2

  EY2
 were all added to this model, would the resulting 

respecified model be identified?
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APPENDIX 6.A

Evaluation of the Rank Condition

The starting point for checking the rank condition is to construct a system matrix, in which the 
endogenous variables of the structural model are listed on the left side of the matrix (rows) and 
all variables in the structural model (excluding disturbances) along the top (columns). In each 
row, a 0 or 1 appears in the columns that correspond to that row. A 1 indicates that the variable 
represented by that column has a direct effect on the endogenous variable represented by that row. 
A 1 also appears in the column that corresponds to the endogenous variable represented by that 
row. The remaining entries are 0’s, and they indicate excluded variables. The system matrix for the 
model of Figure 6.2(a) with all possible disturbance correlations is presented here (I):

“Reading” this matrix for Y1 indicates three 1’s in its row, one in the column for Y1 itself, and 
the others in the columns of variables that, according to the model, directly affect it, X1 and Y3. 
Because X2, X3, and Y2 are excluded from Y1’s equation, the entries in the columns for these vari-
ables are all 0’s. Entries in the rows for Y2 and Y3 are read in a similar way.

The rank condition is evaluated using the system matrix. Like the order condition, the rank 
condition must be evaluated for the equation of each endogenous variable. The steps to do so for 
a model with all possible disturbance correlations are outlined next:

1. Begin with the first row of the system matrix (the first endogenous variable). Cross out all 
entries of that row. Also cross out any column in the system matrix with a 1 in this row. Use the 
entries that remain to form a new, reduced matrix. Row and column labels are not needed in the 
reduced matrix.

2. Simplify the reduced matrix further by deleting any row with entries that are all zeros. Also 
delete any row that is an exact duplicate of another or that can be reproduced by adding other rows 
together. The number of remaining rows is the rank. (Readers familiar with matrix algebra may 
recognize this step as the equivalent of elementary row operations to find the rank of a matrix.) 
For example, consider the following reduced matrix: 

(I)

(II)
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The third row can be formed by adding the corresponding elements of the first and second rows, 
so it should be deleted. Therefore, the rank of this matrix (II) is 2 instead of 3. The rank condition 
is met for the equation of this endogenous variable if the rank of the reduced matrix is greater than or 
equal to the total number of endogenous variables minus 1.

3. Repeat steps 1 and 2 for every endogenous variable. If the rank condition is satisfied for 
every endogenous variable, then the model is identified.

Steps 1 and 2 applied to the system matrix for the model of Figure 6.2(a) with all possible 
disturbance correlations are outlined here (III). Note that we are beginning with Y1:

For step 1, all the entries in the first row of the system matrix (III) are crossed out. Also crossed out 
are three columns of the matrix with a 1 in this row (i.e., those with column headings X1, Y1, and 
Y3). The resulting reduced matrix has two rows. Neither row has entries that are all zero or can be 
reproduced by adding other rows together, so the reduced matrix cannot be simplified further. This 
means that the rank of the equation for Y1 is 2. This rank exactly equals the required minimum 
value, which is one less than the total number of endogenous variables in the whole model, or 3 – 1 
= 2. The rank condition is satisfied for Y1.

We repeat this process for the other two endogenous variables for the model of Figure 6.2(a), 
Y2 and Y3. The steps for the remaining endogenous variables are summarized next.

Evaluation for Y2 (IV):

Evaluation for Y3 (V):

The rank of the equations for each of Y2 and Y3 is 2, which exactly equals the minimum required 
value. Because the rank condition is satisfied for all three endogenous variables of this model, we 
conclude that it is identified.

(IV)

(III)

(V)
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The rank condition is evaluated separately for each block of endogenous variables in the 
block recursive model of Figure 6.2(b). The steps are as follows: First, construct a system matrix 
for each block. For example, the system matrix for the block that contains Y1 and Y2 lists only 
these variables plus prior variables (X1 and X2). Variables of the second block are not included in 
the matrix for the first block. The system matrix for the second block lists only Y3 and Y4 in its 
rows but represents all of the variables in the whole structural model in its columns. Next, the rank 
condition is evaluated for the system matrix of each block. These steps are outlined next.

Evaluation for block 1 (VI):

Evaluation for block 2 (VII):

Because the rank of the equation of every endogenous variable of each system matrix equals the 
number of endogenous variables minus 1 (i.e., 2 – 1), the rank condition is met. Thus, the block 
recursive model of Figure 6.2(b) is identified.

(VI)

(VII)


